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EXCITATION OF A TEMPERATURE WAVE BY A 

RECTANGULAR THERMAL SURFACE PULSE 

A. G. Goloveiko and V. I. Martynikhina UDC 537.52:536.3 

We calculate the temperature field in a metal under the action of a rectangular thermal surface 
impulse with a fixed total energy and varying duration. It is shown that for a given duration of 
this impulse, conditions are created which ensure a maximal shift of the melting isotherm to- 

ward the interior of the metal. 

In the present work we consider a thermophysical process in a metal in regimes when the following con- 
dition holds for the thermal pulse applied at the boundary: 

lV  = F t  = const, (i) 

where F is the thermal  flux density, whichis  constant during the t ime of its action t. The condition W = constant 
can be realized in various ways: f rom a short  pulse of a high-densi ty thermal  flux, to an extended pulse for  a 
low densi ty of the thermal  flux. Condition (1) essent ia l ly  descr ibes  a multitude of pulses which differ by pa ra -  
meters  F and t but have the same pa rame te r  W. 

An analysis shows that the action of thermal  pulses which differ  in pa ramete r s  F and t but have the same 
pa rame te r  W has appreciably different results  on the metal .  

For a long pulse duration the high thermal conductivity characteristic for metals ensures the transfer 
of the heat flux far into the metal. Therefore, the long pulse excites a deep but weak heating of the metal 
whose temperature field is extended over a large region. Towards the end of the pulse, the melting isotherm 
remains near the surface of the metal because of the weak heating. For short pulses of the same energy W, 
on the other hand, the metal is heated to large temperatures, and the temperature field is concentrated near 
the surface of the metal. In this case, the melting isotherm towards the end of the pulse also remains near 
the surface of the metal but for a different reason, because of the spatial concentration of the temperature 

field. 

Clearly, in the intermediate conditions between long and short duration at a given energy W, the melting 
isotherm will be displaced by the largest amount. The aim of the present work is to substantiate this asser- 
tion quantitatively because of its importance in the analysis of the appropriate scientific and applied problems. 

In the solution of the problem formulated above we shall limit ourselves to the analysis of a one-dimen- 
sional thermophysical process, and neglect the phase transformations. The process will be approximated by 
the problem of excitation of a temperature field (or a temperature wave) by a rectangular thermal pulse: 
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TABLE 1. Values  of M ( m 4 . s e c / J  2) a n d N  ( m 3 / j )  fo r  Some 

Meta ls  

Metal M N Metal Af N 

AI 
Fe 
Ni 
Cu 
Zrl 
Mo 

1,55-10 -15 
4,22.10-16 
2,48.10 -16 
1 , 0 0 . 1 0 - 1 6  
1,78.10-1~ 
9,25.10-17 

2,66.10-1o 
5,44.10 -11 
4,90-10-11 
8,20.10-11 
2,10.10-1o 
4,60.10-n 

Ag 
Cd 
Sn 

Z 
Co 

1 ,88 .10  -16 
5,86.10-1~ 
5,20.10-15 
2,51.10-17 
2,22.10-14 
4,96.10-16 

1,I8.10-1o 
3,98.10-1o 
3,32.10-1o 
3,00.10-11 
5,75.10-1o 
4,95.10-11 

TABLE 2. Values of Functions 7,31, and 32 

0 
0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 

0 
0,00082 
0,0038 
0,0102 
0,0240 
0,0455 
0,0780 
0,133 
0,224 
0,380 

5,73 
5,37 
5,00 
4,61 
4,25 
3,83 
3,41 
2,98 
2,51 
1,98 

0,91 
0,92 
0,93 
0,94 
0,95 
0,96 
0,97 
0,98 
0,99 
1 

0,405 
0,438 
0,466 
0,491 
0,528 
0,562 
0,614 
0,681 
0,753 
1 

1,91 
1,85 
1,76 
1,7o 
1,63 
1,53 
1,48 
1 ,37  
1 ,26  
1 

OT(x, t) OZT(x, t) OT(O, "~) OT(oa, "v) 
- = a ; - -  Z -- F; - -  0;  

Oz Ox 2 Ox Ox 

O ~ x ~ o o ;  T(x,  O)=To; O.~<-~t ,  

(2) 

where t is a parameter of the pulse, i.e., its total duration, and r is the instantaneous time of its action. 

The justification of the applicability of this approximation will be given in the concluding part of this 

work. 

The solution of problem (2) is known to be [I] 

(3) 

The i m p o r t a n t  point  in  th is  so lu t ion  for  T = t is the point  x = Xm at  which the t e m p e r a t u r e  c o r r e s p o n d s  to 
the m e l t i n g  of the meta l :  T(xm) = Tin .  One can  a l so  choose a no t he r  c h a r a c t e r i s t i c  point  x = xm* at which the 
t e m p e r a t u r e  co inc ides  with the r educed  m e l t i n g  t e m p e r a t u r e :  

Lv (4) 
T ( z * ) = 7 " *  = T  m + C~- 

At the point x = Xm*, noting that T = t and F = W/t, Eq. (3) can be written in the form 

f x ~  ~ = c~ (T~ - To) d g /  
ierfc ~,2~ ] 2W " 

A s i m i l a r  e x p r e s s i o n  can  a l so  be w r i t t e n  for  the point  x m.  

Denot ing  the a r g u m e n t  of the spec i a l  func t ion  

and so lv ing  Eq. (5) with r e s p e c t  to the t i m e  of d u r a t i o n  of the t h e r m a l  pu l se ,  we find 

W2 
t = 4(ierfca) 2 aC~(T~ - -  To) 2 " 

(5) 

(6) 

(7) 
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Noting,  m o r e o v e r ,  t ha t  a c c o r d i n g  to  (6), ~ = X m / 2 ~ ,  Eq. (5) can  a l s o  be  so lved  fo r  the  c o o r d i n a t e  of the  
c h a r a c t e r i s t i c  po in t  of the  t h e r m a l  f ie ld :  

W 
x* = 4~ ierfc a , 

m Cv (Tin - -  To) 
(8) 

Equations (7) and (8) are solvable since the special function ierfc a is tabulated [I] and the functions 

4 (ierfc ~)z = F, 4a ierfc (z = 7  (9) 

can  be  a s s u m e d  known. The s d e p e n d e n c e  of  t h e s e  func t ions  i s  shown in F ig .  1. I t  is  s e e n  t ha t  fo r  s o m e  

a = a 0, t he  func t ions  r e a c h  t h e i r  m a x i m u m  v a l u e s  Y = 70,  P = P0. The  v a l u e s  s0 ,  70, and #0 c a n ,  wi th  s u f f i -  
c i en t  a c c u r a c y ,  be ob ta ined  f r o m  the  t a b l e s  of  the  funct ion  i e r f c  a [1] o r  f r o m  F ig .  1: 

a o = 0.430; ~0 = 0,222; 70 = 0.405. (10) 

Us ing  t h e s e  d a t a ,  
t ions :  

w h e r e  

Eqs .  (7) and  (8) can  be  w r i t t e n  in t h e i r  f inal  f o r m ,  w h i c h i s  u se fu l  fo r  p r a c t i c a l  c a l c u l a -  

x*  = nNW; t == ~ M W  2, (11) 

N = 7o ; M = Fo . 
Cv (T,~ - -  To) aC~ (T~  - -  To) ~ 

n = 7 .  i~= ~__ 
70 I~o 

(12) 

(13) 

The  v a l u e s  of  N and M fo r  s o m e  m e t a l s  a t  T o = 300~ a r e  g iven  in T a b l e  1. I t  i s  s e e n  tha t  t h e s e  q u a n t i -  
t i e s  d i f f e r  a p p r e c i a b l y  f o r  d i f f e r e n t  m e t a l s .  

I t  should  be  e m p h a s i z e d  tha t  the  func t ions  ~ and /3 in (11) depend  on s ,  and f o r m  a t w o - v a l u e d  c o r r e s -  
pondence ;  one va lue  of ~ c o r r e s p o n d s  to  two va lues  o f /3 .  F o r  the  c o n v e n i e n c e  of p r a c t i c a l  c a l c u l a t i o n s ,  T a b l e  
2 g ives  the  c o r r e s p o n d i n g  v a l u e s  of t h e s e  func t ions .  Each  l ine  con ta ins  one v a l u e  of ~ and the  two c o r r e s p o n d -  

ing va lue s  of fll and fi2. 

I t  i s  s e e n  f r o m  T a b l e  2 tha t  f o r  ~ = 1, /31 = fi2 = 1. F o r  a p u l s e  wi th  a f ixed  p a r a m e t e r  W,  t h e s e  p a r a -  
m e t e r s  d e t e r m i n e  the  cond i t ions  when the  p u l s e  e x c i t e s  the  g r e a t e s t  dep th  of h e a t i n g  (mel t ing)  of  the  m e t a l .  I t  
fo l lows  f r o m  Eq.  (11) t ha t  th i s  o p t i m u m  r e g i m e  is de f ined  by  the  fo l lowing  f o r m u l a s :  

x* = N W ,  t o =  M W  2. (14) 
m 

In wha t  fo l lows i t  i s  e x p e d i e n t  to  d iv ide  Eq.  (11) into two r e g i o n s  of the  p a r a m e t e r  t (t < t o and t > to) in 
v iew of  t he  t w o - v a l u e d  c o r r e s p o n d e n c e  b e t w e e n  the  func t ions  7/ and fi : 

x* = ~INW, t = ~ M W Z ,  t < to, (15) m 

x* ~ ~ N W ,  t ~ ~ 2 M W  2, t > 4 .  (16) 

An i m p o r t a n t  l aw  fo l lows  f r o m  the  d a t a  in T a b l e  2 a n d  f r o m  the  equa t ions  above:  F o r  7} ~ 0 fi 1 -~ 0, and 
/32 - -  5.73. Th i s  i n d i c a t e s  tha t  in the  r e g i o n  t < to, as  the  d u r a t i o n  of  the  i m p u l s e  i n c r e a s e s ,  one h a s  x m ~ 0 
a s y m p t o t i c a l l y ,  and in t he  r e g i o n  t > t o when  the  d u r a t i o n  i n c r e a s e s  up to  

tm = 5 . 7 3 M W  z, (17) 

one has  x m = 0. 

E q u a t i o n  (17) d e f i n e s  the  m a x i m u m  d u r a t i o n  of  the  t h e r m a l  p u l s e  wi th  a g iven  p a r a m e t e r  W, at  which  
* (or  T = T m) r e a c h e s  the  b o u n d a r y  of  t he  m e t a l .  F o r  l o n g e r  d u r a t i o n s  of t he  t h e r m a l  the  i s o t h e r m  T = T m 

p u l s e  (t > t m ) ,  the  m e l t i n g  po in t  is  not  r e a c h e d  a t  the  b o u n d a r y ,  and the  p u l s e  has  no e r o s i v e  r e s u l t s .  

By a n a l y z i n g  Eq.  (17) and t ak ing  into account  the  d a t a  in T a b l e  1 i t  is  s e e n  tha t  fo r  a g iven  W, the  d i f f e r -  
ence  in t he  va lue s  of t m f o r  d i f f e r e n t  m e t a l s  can  be  s u b s t a n t i a l ,  and can  r e a c h  t h r e e  o r d e r s  of m a g n i t u d e .  Th is  
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Fig. 2 Fig. 1 
Fig. 1. Dependence on~ of the functions 7 and p. 

Fig. 2. Dependence of the displacement of the melting isotherm 
x* (#m) on the duration of the applied rectangular thermal pulse m 

t (sec) for copper and W = 1 J / m m  2. 

expresses the individual properties of the metals with respect to the action of a thermal pulse with a given 

parameter W. 

* and t from Eqs. (14)-(17) and from the data of Table 2. Figure 2 gives the results of calculation of x m 
The calculations were carried out for copper and W = 1 J/mm 2. 

g< , 
The dependence x m = x m (t) shown in Fig. 2 illustrates in a clear and specific form the fact that, for a 

pulse with a given energy W, there is indeed a duration t o for which the melting isotherm is displaced towards 
the interior of the metal by the greatest amount. 

In conclusion one should discuss the possibility of application of the results. First of all, the starting 
problem (2) does not take into account the melting process, and this results in the approximate form of the re- 
sults. However, a corresponding analysis of the more general Stephan problem, taking into account the melt- 
ing process, whichwas considered in [2] showed that the increase in accuracy is of the order of 10%, and this 

only pertains to the vicinity of the maximum of the curve x m = x m (t) where the discrepancy is greatest. Con- 
sequently, the obtained dependence x m = x m (t) can, with acceptable accuracy, be used to find the shift of the 
melting front. This conclusion is justifiable only for rectangular pulses in the region t < tm when tm is not 
too large, and the process remains one-dimensional. 

In addition, the starting problem (2) does not take into account evaporation. A short pulse in which, for 
a given W, the heat flux density becomes large excites a high-temperature field and causes intensive evapora- 
tion. The solution of the problem which takes into account this process has been solved by us elsewhere [3, 4], 
and leads in many ways to different conclusions. The increased accuracy of the shift of the melting isotherm 
(or melting front), however, consists of less than 10%. This result also indicates the applicability of the ob- 
tained results for qualitative discussions. 

It should also be noted that the obtained dependence x m = x m (t) is of interest in applications. Figure 2 
indicates that for short rectangular pulses with a given parameter W, the position of the melting isotherm be- 
comes more shallow and consequently, the pulses cause less damage. It is also seen that to obtain the maxi- 
mum depth of the melting isotherm for the same W, it is necessary only to ensure an appropriate duration of 
the pulse. One is also interested in the durations t > tm when the rectangular pulses with a given parameter 
W cannot bring about any phase transformation or metal damage. 

N O T A T I O N  

CV, volume specific heat; a, thermal diffusivity; LV, volume specific heat of melting; Tin, melting 
temperature of the metal; T0, initial temperature;  and W, surface energy density of the heat pulse. 

!. 
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